CONSERVATORE NATIONAL DES ARTS ET METTERS

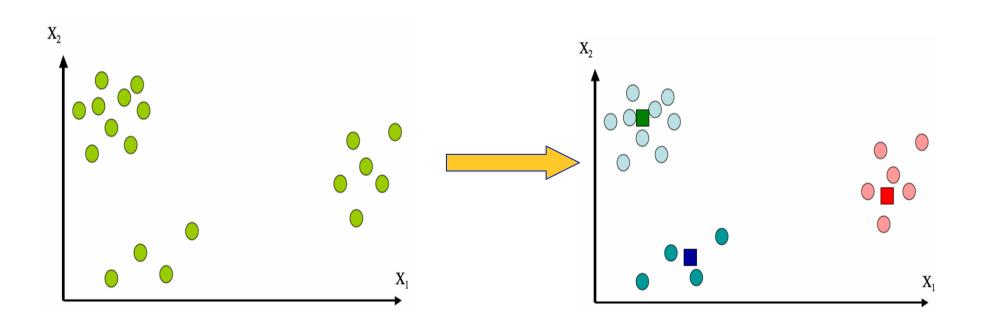
> Automated Variable Weighting in k-Means Type Clustering (Huang, 17: Ng, MK: Honggiang Pong: Zichen Li

(Huang, J.Z.; Ng, M.K.; Hongqiang Rong; Zichen Li.; 2005)

Presentation

NB: this presentation was originally written in French. I have translated it quickly so please don't get too upset if you encounter English mistakes. Instead, blame Gtanslate ;-) and drop me in email. Thanks! Franck.

Franck.Dernoncourt@gmail.com 28 Septembre 2010



1. Clustering

- 2.k-means clustering
- 3. Automated Variable Weighting
- 4. Experiments and results
- 5. Limitations of the study

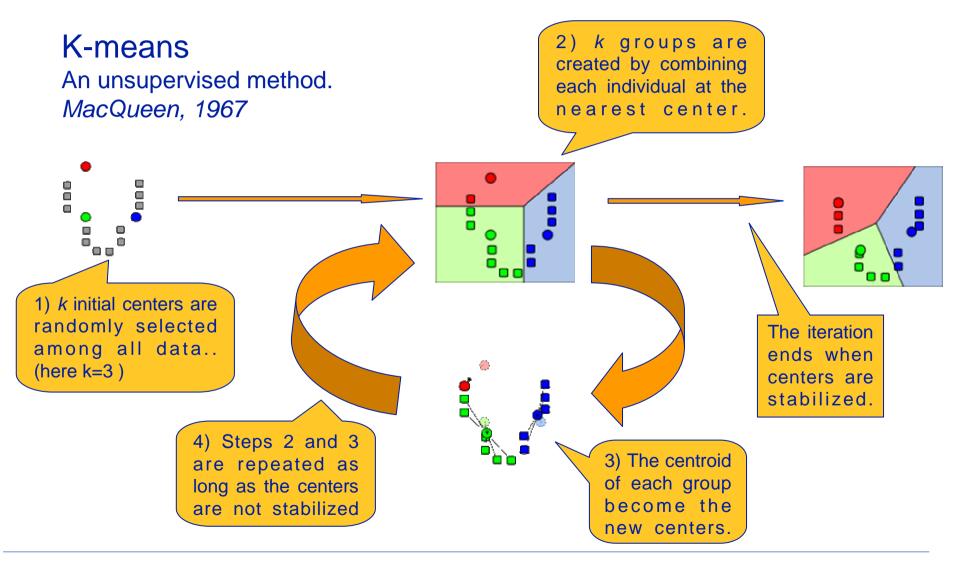
Clustering

1. Clustering

Examples of clustering applications

- *Marketing*: find groups of similar customers
- *Biology*: classify plants according to their characteristics
- *Evolutionary algorithms* : improve crossovers' diversity.

•

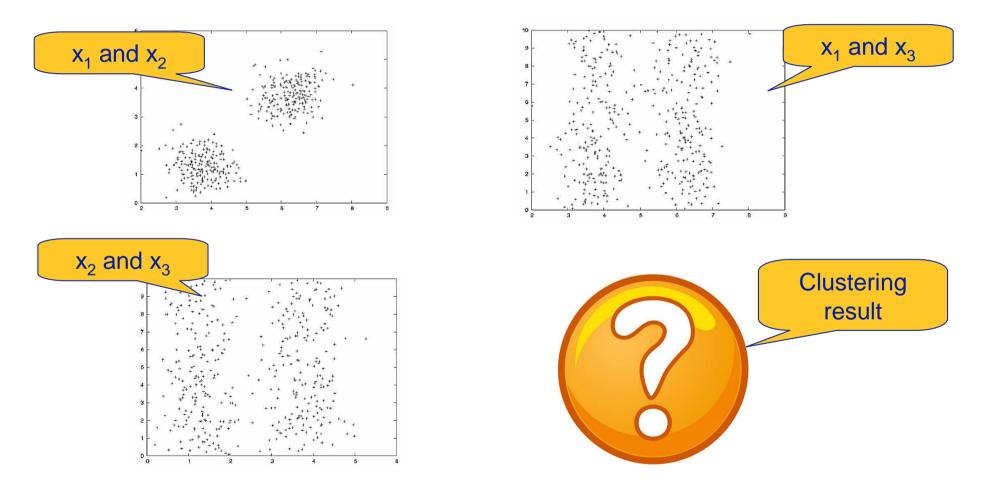


1. Clustering

- 2.k-means clustering
- 3. Automated Variable Weighting
- 4. Experiments and results
- 5. Limitations of the study

Limitations of the K-means algorithm:

- ✗ Require a metric
- **X** Need to guess *a priori* the number of classes
- **×** The choice of initial centers influences the results
- **X** Sensitive to noise

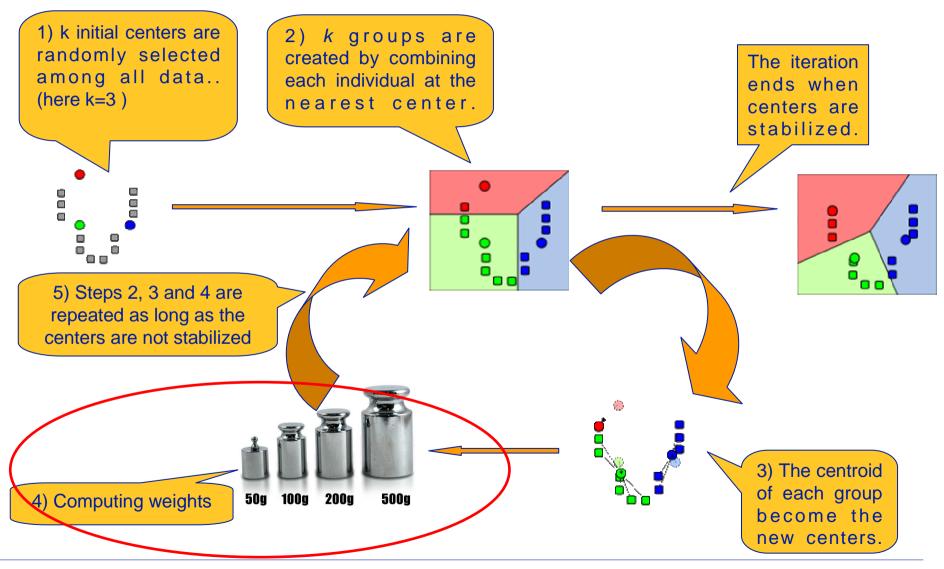


Limitations of the K-means algorithm:

- ✗ Require a metric
- ➤ Need to guess *a priori* the number of classes
- **×** The choice of initial centers influences the results
- **X** Sensitive to noise

3D example: x_1 and x_2 are "clusterable", x_3 is noise

- 1. Clustering
- 2.k-means clustering
- 3. Automated Variable Weighting
- 4. Experiments and results
- 5. Limitations of the study


(Automated Variable Weighting in k-Means Type Clustering – 2005)

<u>Idea</u>: Weight each variable in order to give less weight to the variables affected by significant noise.

State of the art: Modha and Spangler already had this idea ... but they calculate the weights at the beginning of the algorithm.

Here, the weights will be calculated dynamically at each iteration of the algorithm K-means.

Computing weights - Theorem

$$\hat{w}_{j} = \begin{cases} 0 & \text{si } D_{j} = 0\\ \frac{1}{\sum_{t=1}^{h} \left[\frac{D_{j}}{D_{t}}\right]^{\frac{1}{\beta-1}}} & \text{si } D_{j} \neq 0 \end{cases}$$
with
$$D_{j} = \sum_{l=1}^{k} \sum_{i=1}^{n} \hat{u}_{i,l} d(x_{i,j}, z_{l,j})$$

Where $u_{i,l}$ means that the object i is assigned to the class I

d(x_{i,j}, z_{l,j}) is the distance between objects x and z h is the number of variables D_j such as D_j \neq 0 z_{l,j} is the value of the variable j of the centroid of the cluster I

Computing weights - Theorem

$$\hat{w}_j = \begin{cases} 0 & \text{si } D_j = 0\\ \frac{1}{\sum\limits_{t=1}^h \left[\frac{D_j}{D_t}\right]^{\frac{1}{\beta-1}}} & \text{si } D_j \neq 0 \end{cases}$$

Idea: give a low weight for the variables, the value of each individual on average away from the centroid

with

$$D_{j} = \sum_{l=1}^{k} \sum_{i=1}^{n} \hat{u}_{i,l} d(x_{i,j}, z_{l,j})$$

Where $u_{i,I}$ means that the object i is assigned to the class I

d(x_{i,j}, z_{l,j}) is the distance between objects x and z h is the number of variables D_j such as D_j \neq 0 z_{l,j} is the value of the variable j of the centroid of the cluster I

Computing weights

Function to be minimized:
$$\begin{split} P(\hat{U},\hat{Z},W) &= \sum_{j=1}^m w_j^\beta \sum_{l=1}^k \sum_{i=1}^n \hat{u}_{i,l} d(x_{i,j},z_{l,j}) \\ &= \sum_{j=1}^m w_j^\beta D_j, \end{split}$$

Constraint:
$$\sum_{j=1}^m w_j = 1, \quad 0 \le w_j \le 1$$

→ Lagrange multipliers!

Computing weights

The Lagrangian:

$$\Psi(W,\alpha) = \sum_{j=1}^{h} w_j^{\beta} D_j + \alpha \left(\sum_{j=1}^{h} w_j - 1\right)$$

We get:

$$\frac{\partial \Psi(\hat{W}, \hat{\alpha})}{\partial \hat{w}_j} = \beta \hat{w}_j^{\beta - 1} D_j + \hat{\alpha} = 0 \quad \text{for } 1 \le j \le h,$$

$$\frac{\partial \Psi(\hat{W}, \hat{\alpha})}{\partial \hat{\alpha}} = \sum_{j}^{h} \hat{w}_{j} - 1 = 0.$$

Computing weights

We can see:
$$\hat{w}_j = \left(rac{-\hat{lpha}}{\beta D_j}
ight)^{rac{1}{\beta-1}} \quad ext{for } 1 \leq j \leq h$$

Moreover:
$$\sum_{t=1}^{h} \left(\frac{-\hat{\alpha}}{\beta D_t} \right)^{\frac{1}{\beta-1}} = 1 \longrightarrow (-\hat{\alpha})^{\frac{-1}{\beta-1}} = 1 / \left[\sum_{t=1}^{h} \left(\frac{1}{\beta D_t} \right)^{\frac{1}{\beta-1}} \right]$$

Hence:

$$\hat{w}_{j} = \frac{1}{\sum_{t=1}^{h} \left[\frac{D_{j}}{D_{t}}\right]^{\frac{1}{\beta-1}}} \qquad \text{QED!}$$

Computing weights - Theorem

$$\hat{w}_j = \begin{cases} 0 & \text{si } D_j = 0\\ \frac{1}{\sum\limits_{t=1}^h \left[\frac{D_j}{D_t}\right]^{\frac{1}{\beta-1}}} & \text{si } D_j \neq 0 \end{cases}$$

Idea: give a low weight for the variables, the value of each individual on average away from the centroid

with

$$D_{j} = \sum_{l=1}^{k} \sum_{i=1}^{n} \hat{u}_{i,l} d(x_{i,j}, z_{l,j})$$

Where u_{i,I} means that the object i is assigned to the class I

d(x_{i,j}, z_{l,j}) is the distance between objects x and z h is the number of variables D_j such as D_j \neq 0 z_{l,j} is the value of the variable j of the centroid of the cluster I

- 1. Clustering
- 2.k-means clustering
- 3. Automated Variable Weighting
- 4. Experiments and results
- 5. Limitations of the study

Experiment 1: with a synthetic data set

5 Variables, 300 individuals : X_1, X_2, X_3 : Data forming 3 clear classes X_4, X_5 : Noise

As we know the 3 classes, we will **compare** the results obtained by the K-means algorithm with the standard K-means with dynamic weighting.

To make this comparison, we use the Rand index and the Clustering Accuracy in order to assess the performance of a classification compared to the desired classification.

Rand index:
$$R = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

$$\begin{aligned} \bullet & a = |S^*| \cdot \circ \circ S^* = \{(o_i, o_j) | o_i, o_j \in X_k, o_i, o_j \in Y_l\} \\ \bullet & b = |S^*| \cdot \circ \circ S^* = \{(o_i, o_j) | o_i \in X_{k_1}, o_j \in X_{k_2}, o_i \in Y_{l_1}, o_j \in Y_{l_2}\} \\ \bullet & c = |S^*| \cdot \circ \circ S^* = \{(o_i, o_j) | o_i, o_j \in X_k, o_i \in Y_{l_1}, o_j \in Y_{l_2}\} \\ \bullet & d = |S^*| \cdot \circ \circ S^* = \{(o_i, o_j) | o_i \in X_{k_1}, o_j \in X_{k_2}, o_i, o_j \in Y_l\} \\ \text{avec } 1 \le i, j \le n, i \ne j, 1 \le k, k_1, k_2 \le r, k_1 \ne k_2, 1 \le l, l_1, l_2 \le s, l_1 \ne l_2 \end{aligned}$$

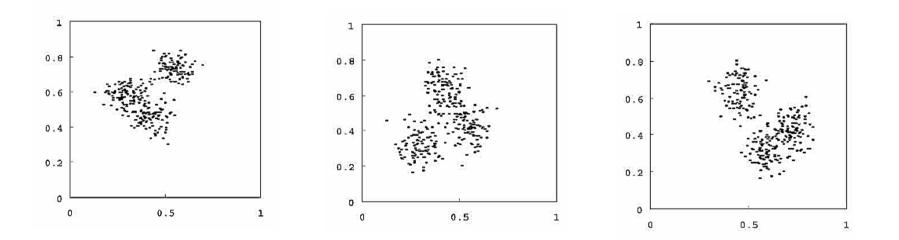
Clustering accuracy :

$$r = 100 \frac{\sum_{i=1}^{k} a_i}{N}$$

- a_i is the number of points assigned to the correct class
- N is the total number of points

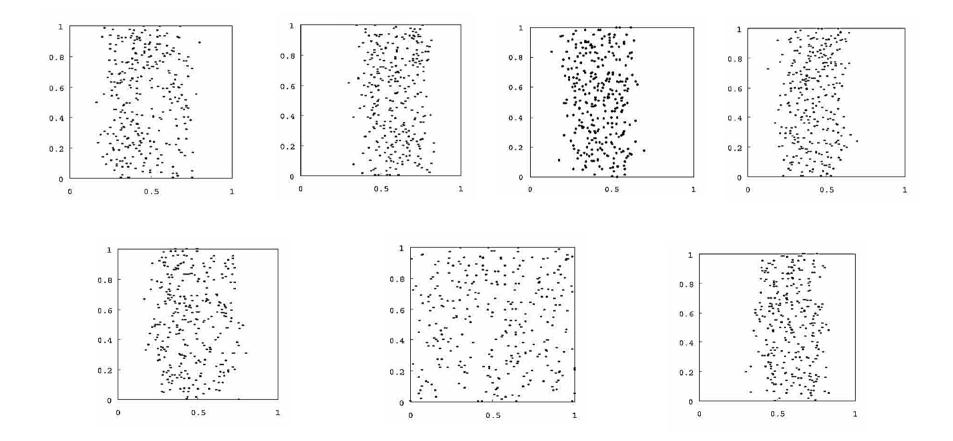
Rand index:
$$R = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

$$\begin{aligned} \bullet & a = |S^*| \text{ , où } S^* = \{(o_i, o_j) | o_i, o_j \in X_k, o_i, o_j \in Y_l\} \\ \bullet & b = |S^*| \text{ , où } S^* = \{(o_i, o_j) | o_i \in X_{k_1}, o_j \in X_{k_2}, o_i \in Y_{l_1}, o_j \in Y_{l_2}\} \\ \bullet & c = |S^*| \text{ , où } S^* = \{(o_i, o_j) | o_i, o_j \in X_k, o_i \in Y_{l_1}, o_j \in Y_{l_2}\} \\ \bullet & d = |S^*| \text{ , où } S^* = \{(o_i, o_j) | o_i \in X_{k_1}, o_j \in X_{k_2}, o_i, o_j \in Y_l\} \\ \text{avec } 1 \leq i, j \leq n, i \neq j, 1 \leq k, k_1, k_2 \leq r, k_1 \neq k_2, 1 \leq l, l_1, l_2 \leq s, l_1 \neq l_2 \end{aligned}$$

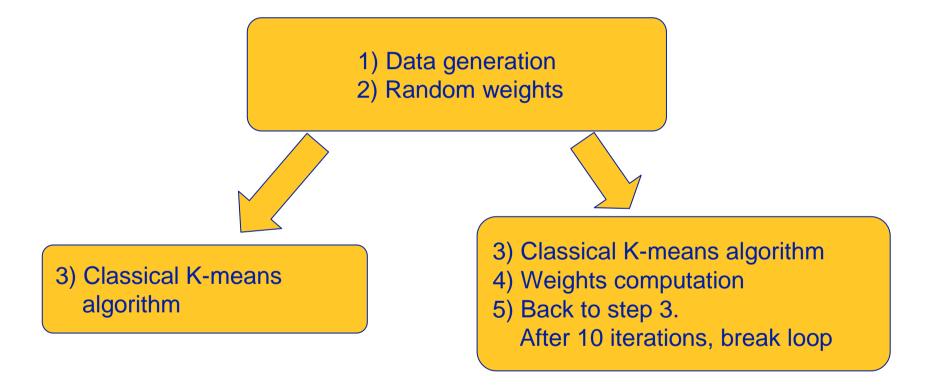

Clustering accuracy :

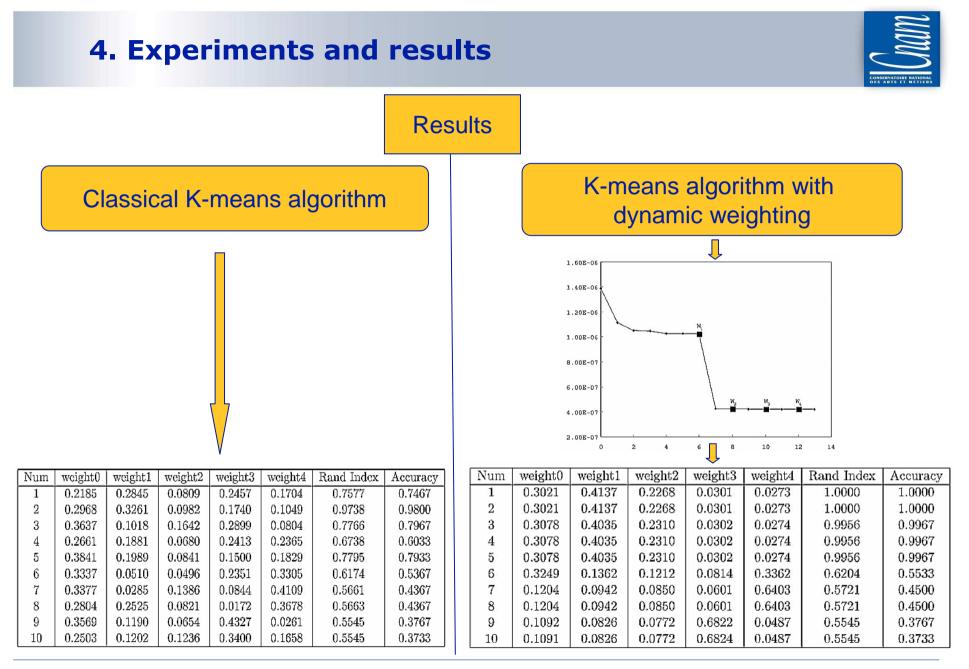
$$r = 100 \frac{\sum_{i=1}^{k} a_i}{N}$$

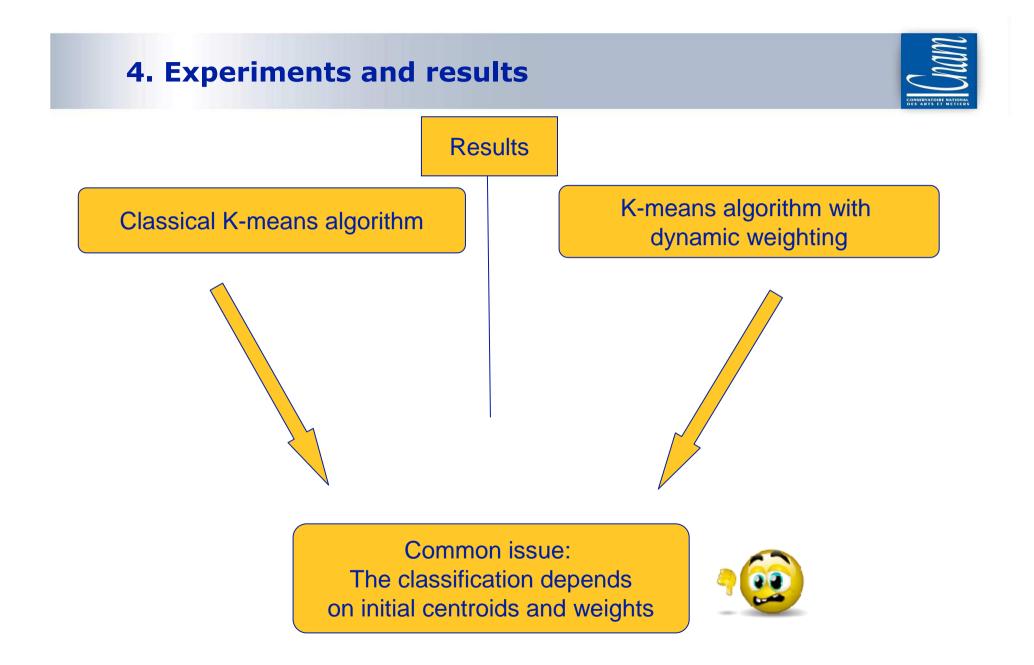
- a_i is the number of points assigned to the correct class
- N is the total number of points



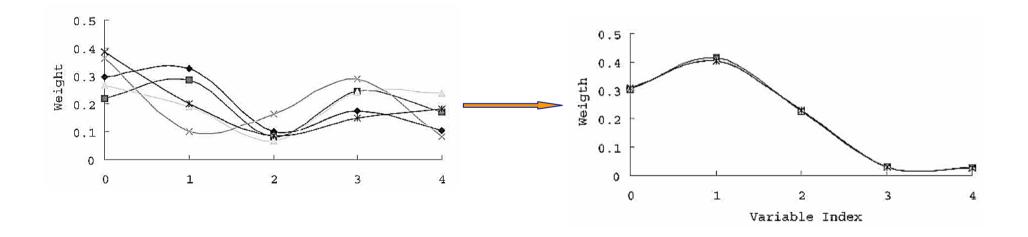
X₁, X₂, X₃: Data forming 3 clear classes


X₄, X₅ :Noise




24 | 31/12/2011 | Franck.Dernoncourt@gmail.com

Experiment:



Common solution: Run the algorithms several times and take the best result.

The weights converge similarly:

Common solution: Run the algorithms several times and take the best result.

Results:

Num	No Weights	Fixed Weights	Weights Changed
1	(0.4767, 0.5768)	(0.6764, 0.7317)	(0.8225, 0.8671)
2	(0.4833, 0.5796)	(0.6990, 0.7462)	(0.8453, 0.8809)
3	(0.5267, 0.6052)	(0.6871, 0.7429)	(0.7830, 0.8357)
4	(0.7200, 0.7652)	(0.6880, 0.7448)	(0.7893, 0.8403)
5	(0.7800, 0.7877)	(0.6938, 0.7445)	(0.8682, 0.8963)
6	(0.4764, 0.5780)	(0.6930, 0.7444)	(0.8337, 0.8713)
7	(0.7167, 0.7610)	(0.6960, 0.7479)	(0.7992, 0.8474)
8	(0.7767, 0.7884)	(0.6778, 0.7361)	(0.8003, 0.8478)
9	(0.7800, 0.7877)	(0.7040, 0.7515)	(0.8426, 0.8776)
10	(0.7200, 0.7589)	(0.6740, 0.7379)	(0.7810, 0.8341)
Average	(0.6457, 0.6989)	(0.6889, 0.7428)	(0.8156, 0.8599)

Experiment 2: With two real-world datasets

Australian Credit Card data : 690 individuals, 5 quantitative variables, 8 qualitative variables.

Heart Diseases : 270 individuals, 6 quantitative variables, 9 qualitative variables.

Objectives:

- 1) Assess the impact of β , the parameter used in the formula calculation of weight.
- 2) Compare the results with previous studies performed on these data sets.

Australian Credit Card data

Accuracy	$\beta = -10$	$\beta = -9$	$\beta = -8$	$\beta = -7$	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta=2$	$\beta = 3$	$\beta = 4$	$\beta = 5$	$\beta = 6$	$\beta = 7$	$\beta = 8$	$\beta = 9$	$\beta = 10$	$\beta = 0$
0.85																	1	1	1	
0.84																				
0.83																	1	1	1	
0.82																4				3
0.81	4	4	6	5	7	13	10	7	12	11			8	46	39	42				13
0.80	32	32	27	23	22	15	19	19	10	16			6	11	18	11				6
0.79	6	6	8	8	7	7	7	8	8	1			2							4
0.78	3	3	3	3	4	2	1	2	2	5			3							2
0.77	7	6	6	6	4	5	5	5	7	5			19				3	3	3	2
0.76	1	2	2	2	4	5	5	6	3								3	3	3	10
0.75									4	8							4	4	4	3
0.74																	4	4	4	3
0.73								1									3	3	3	2
0.72								1												
≤ 0.71	47	47	48	53	52	53	53	53	54	54	100	100	62	43	43	43	81	81	81	52

4	. Ex	4. Experiments and results															TIMMO RE NATIONAL T METTERS			
						A	ustr	F aliar	Resi n Cre		Car	d da	nta	-	redi		n co	omp	e in ared lies!	
Accuracy 0.85 0.84	β=-10	β=-9	β=-8	β=-7	β=-6	β=-5	β=-4	β=-3	β=-2	β=-1	β=2	β=3	β=4	β=5	β=6	β=7	<u>β=8</u> 1	β=9 1	$\frac{\beta=10}{1}$	β=0
0.83 0.82 0.81 0.80 0.79 0.78	4 32 6 3	4 32 6 3 6 2	6 27 8 3 6 2	5 23 8 3 6 2	7 22 7 4 4	13 15 7 2 5 5	10 19 7 1 5 5	7 19 8 2 5 6	12 10 8 2 7	11 16 1 5 5			8 6 2 3 19	46 11	39 18	4 42 11	1	1	1	3 13 6 4 2
0.77 0.76 0.75 0.74 0.73 0.72 <0.71	7 1 47	6 2 47	6 2 48	6 2 53	4 4 52	5 5 53	5 5 53	5 6 1 1 53	7 3 4 54	5 8 54	100	100	19 62	43	43	43	3 4 4 3 81	3 3 4 3 81	3 4 4 3 81	4 2 10 3 2 52

4. Experiments and results **Results** +0.02 increase in prediction compared Australian Credit Card data to previous studies! Erratum: 0.85 is also reached when $\beta = 8$ Accuracy $\beta = -10$ $\beta = -9$ $\beta = -8$ $\beta = -7$ $\beta = -6$ $\beta = -5$ $\beta = -4$ $\beta = -3$ $\beta = -2$ $\beta = -1$ $\beta = 2$ $\beta = 3$ $\beta = 4$ $\beta = 5$ $\beta = 6$ $\beta = 8$ $\beta = 9$ $\beta = 1$ $\beta = 0$ $\beta =$ 0.850.840.83 0.820.817 4 8 2 5 6 6 8 8 0.80 2 1 5 0.79 $\mathbf{2}$ 0.78 0.77 0.76 0.75 0.74 0.73 0.72 < 0.71

Heart Diseases

Accuracy	$\beta = -10$	$\beta = -9$	$\beta = -8$	$\beta = -7$	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$	$\beta = 6$	$\beta = 7$	$\beta = 8$	$\beta = 9$	$\beta = 10$	$\beta = 0$
0.85																	1	1	1	
0.84						1	3		5											
0.83	2	4	5	6	8	11	13	14	2	13							5	5	5	13
0.82					1				6								4	4	4	
0.81			1	1	1	2	6	50	53	5							2	2	2	
0.80					1	52	72	21	10	44							3	3	3	49
0.79			1	5	63 7	17			3	14				4	1	8	4	4	4	23
0.78	93	91	88	83		9			4	6			4	41	97	91				
0.77					12							1	88	$\begin{array}{c} 41 \\ 55 \end{array}$	2		1	1	1	
0.76												73					3	3	3	
0.75												5					2	2	2	
0.74												2	2				5	5	5	
0.73								1			1	3					7	7	7	
0.72								1				2	4							
≤ 0.71	5	5	5	5	7	8	9	13	17	18	99	14	2			ĩ	63	63	63	15

4	. Ex	pe	rim	ien	ts a	anc	l re	esu	lts											
								ł	Resi	ults			ĺ		+0.(02 ir	ncre	ase	in	
								Hea	nrt D	isea	ses								ared lies!	
Accuracy 0.85	β=-10	β=-9	β=-8	β=-7	β=-6	β=-5	β = -4	β=-3	β=-2	β=-1	β=2	β=3	β=4	β=5	β=6	β=7	$\frac{\beta=8}{1}$	$\beta=9$ 1	$\beta = 10$	β=0
0.84 0.83 0.82	2	4	5	6	8 1	1 11	3 13	14	5 2 6	13							5 4	5 4	5 4	13
0.81 0.80 0.79	12.21		1 1	1 5	1 1 63 7	2 52 17 9	6 72	50 21	53 10 3 4	5 44 14				4	1	8	2 3 4	2 3 4	2 3 4	49 23
0.78 0.77 0.76 0.75	93	91	88	83	7 12	9			4	6		1 73 5 2	4 88	41 55	1 97 2	91	1 3 2	1 3 2	1 3 2 5 7	
0.74 0.73 0.72					7	2	y	1 1	57 1	75	Ĩ,	3 2	2 4				5 7	5 7		
≤ 0.71	5	5	5	5	7	8	9	13	17	18	99	14	2			1	63	63	63	15

WW

How about weights?

	Credit	Card Da	ata	Heart Disease Data							
v_1	0.0130	v_9	0.1670	v_1	0.1176	v_9	0.0122				
v_2	0.1652	v_{10}	0.0139	v_2	0.0091	v_{10}	0.1553				
v_3	0.1871	v_{11}	0.0088	v_3	0.0069	v_{11}	0.0104				
v_4	0.0167	v_{12}	0.0083	v_4	0.1492	v_{12}	0.0070				
v_5	0.0167	v_{13}	0.0167	v_5	0.3331	v_{13}	0.0122				
v_6	0.0044	$**v_{14}$	0.0044	v_6	0.0123						
v_7	0.0093	$**v_{15}$	0.0021	**v7	0.0064						
v_8	0.5167			v_8	0.1684						

How about weights?

	Credit	Card Da	ata	H	eart Dise	ease D	ata
v_1	0.0130	v_9	0.1670	v_1	0.1176	v_9	0.0122
v_2	0.1652	v_{10}	0.0139	v_2	0.0091	v_{10}	0.1553
v_3	0.1871	v_{11}	0.0088	v_3	0.0069	v_{11}	0.0104
v_4	0.0167	v_{12}	0.0083	v_4	0.1492	v_{12}	0.0070
v_5	0.0167	v_{13}	0.0167	v_5	0.3331	v_{13}	0.0122
v_6	0.0044	**	0.0011	v_6	0.0123		
v_7	0.0093	**	0.0021	**	0.0064		
v_8	0.5167			v_8	0.1684		

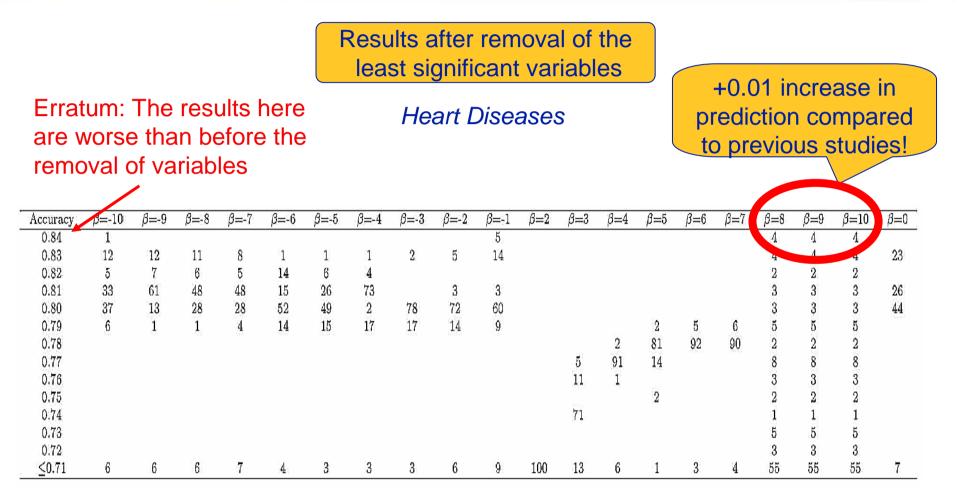
Results after removal of the least significant variables

Australian Credit Card data

Accuracy	$\beta = -10$	$\beta = -9$	$\beta = -8$	$\beta = -7$	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$	$\beta = 6$	$\beta = 7$	$\beta = 8$	$\beta = 9$	$\beta = 10$	$\beta = 0$
0.86																		1	1	
0.85																				
0.84																				
0.83																				
0.82																2	4			
0.81	2	1	$\tilde{1}$	2	1		1						6 7	32	51	41	45	2	2	
0.80	35	36 10	40	38	38	37	36	29	28	24			7	32 33	$\frac{51}{16}$	$\frac{41}{24}$	$\begin{array}{c} 45 \\ 19 \end{array}$			31
0.79	10	10	6	7	5	4	3	11	$\frac{28}{10}$	24 9			1	1		1				31 17 10 10
0.78	3	3	3	3	4	4	4	3	1				3					1	1	10
0.77	20	3 20	20	20	20	20	20	21	15	11			29					2	2	10
0.76									10	16			1					4	4	
0.75																		5	5	
0.74															1			2	2	2
0.73								1										4	4	
0.72								1										2	2	
≤ 0.71	30	30	30	30	32	35	36	36	36	40	100	100	53	34	32	32	32	77	77	30

								ults ast s												
						A	ustr	aliar	n Cre	edit	Card	d da	nta		pre	dict	ion	com	se in ipare udie:	ed
Accuracy	$\beta = -10$	$\beta = -9$	β=-8	$\beta = -7$	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta=3$	$\beta = 4$	$\beta = 5$	$\beta = 6$	$\beta = 7$	$\beta = \beta$	$\beta=9$	$\beta = 10$	2=0
0.86 0.85 0.84 0.83																~		1	1	ノ
0.82	ñ	40	- ii	~	a.								c	20	81	$\begin{array}{c} 2\\ 41\\ 24\\ 1\end{array}$	$4 \\ 45 \\ 19$	2	2	
0.81 0.80	2	36	40	2 38 7 3 20	28	37	36	20	28	24			6 7	32 33 1	$51 \\ 16$	24	40	2	2	31
0.79	35 10 3	36 10 3 20	$40 \\ 6 \\ 3 \\ 20$	7	38 5 4 20	37 4 4 20	36 3 4	29 11 3 21	10	9			1	1	10	1	19			17
0.78	3	3	3	3	4	4	4	3	10 1 15	e 3			3			-		1	1	10
0.77	20	20	20	20	20	20	20	21	15	11			29					2	2	10
0.76									10	16			1					4	$\frac{2}{4}$	
0.75																		5	5	
0.74															1			2	2	2
0.73								1										4	4	
0.72								1										2	2	
≤ 0.71	30	30	30	30	32	35	36	36	36	40	100	100	53	34	32	32	32	77	77	30

Results after removal of the least significant variables


Heart Diseases

Accuracy	$\beta = -10$	$\beta = -9$	$\beta = -8$	β=-7	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta=3$	$\beta=4$	$\beta=5$	$\beta = 6$	β=7	β=8	$\beta=9$	$\beta = 10$	$\beta = 0$
0.84	1									5							4	4	4	
0.83	12	12	11	8	1	1	1	2	5	14							4	4	4	23
0.82	5	7	6	5	14	6	4										2	2	2	
0.81	33	61	48	48	15	26	73		3	3							3	3	3	26
0.80	37	13	28	28	52	49	2	78	72	60							3	3	3	44
0.79	6	1	1	4	14	15	17	17	14	9				2	5	6	5	5	5	
0.78													2	81	92	90	2	2	2	
0.77												5	91	14			8	8	8	
0.76												11	1				3	3	3	
0.75														2			2	2	2	
0.74												71					1	1	1	
0.73																	5	5	5	
0.72																	3	3	3	
≤ 0.71	6	6	6	7	4	3	3	3	6	9	100	13	6	1	3	4	55	55	55	7

						F	Resu lea:	st si	after gnifi art [cant	var	iabl	-		рі	redio	ctior	n co	ase mpa studi	ared
Accuracy	$\beta = -10$	$\beta = -9$	β=-8	β=-7	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta=3$	$\beta=4$	$\beta=5$	$\beta = 6$	$\beta = 7$	β=8	$\beta=9$	β=10	$\beta=0$
0.84	1									5							4	4	4	
0.83	12	12	11	8	1	1	1	2	5	14							4	1	4	23
0.82	5	7	6	5	14	6	4										2	2	2	
0.81	33	61	48	48 28 4	15 52 14	26	73		3	3							3	3	3	26
0.80	37	13	48 28 1	28	52	49	73 2 17	78 17	72 14	60 9							3	3	3	44
0.79	6	1	1	4	14	15	17	17	14	9				2	5	6	5	5	5	
0.78													2	2 81 14	5 92	6 90	2	2	2	
0.77												5	2 91	14			8	8	8	
0.76												5 11	1				3	3	3	
0.75														2			2	2	2	
0.74												71					1	1	1	
0.73																	5	5	5	
0.72																	3	3	3	
≤0.71	6	6	6	7	4	3	3	3	6	9	100	13	6	1	3	4	55	55	55	7

- 1. Clustering
- 2.k-means clustering
- 3. Automated Variable Weighting
- 4. Experiments and results
- 5. Limitations of the study

1) The choice of β does seem empirically.

The study found that depending on the value of β , the classification results vary widely, and that the best result is better than the results obtained with other algorithms K-means.

Observation, but not interpretation.

Résultats en supprimant les variables au poids faible

Heart Diseases

Accuracy	$\beta = -10$	$\beta = -9$	β=-8	β=-7	$\beta = -6$	$\beta = -5$	$\beta = -4$	$\beta = -3$	$\beta = -2$	$\beta = -1$	$\beta = 2$	$\beta=3$	$\beta=4$	β=5	$\beta = 6$	$\beta=7$	β=8	$\beta=9$	$\beta = 10$	β=0
0.84	(1)									5							4	4	4	
0.83	12	12	11	8	1	1	1	2	5	14							4	4	4	23
0.82	5	7	6	5	14	6	4										2	2	2	
0.81	33	61	48	48	15	26	73		3	3							3	3	3	26
0.80	37	13	28	28	52	49	2	78	72	60							3	3	3	44
0.79	6	1	1	4	14	15	17	17	14	9				2	5	6	5	5	5	
0.78													2	81	92	90	2	2	2	
0.77												5	91	14			8	8	8	
0.76												11	1				3	3	3	
0.75														2			2	2	2	
0.74												71					1	1	1	
0.73																	5	5	5	
0.72																	3	3	3	
≤ 0.71	6	6	6	$\overline{7}$	4	3	3	3	6	9	100	13	6	1	3	4	55	55	55	7

2) Algorithm complexity analysis?

The article says that the complexity is O (tmnk) with:

- k is the number of classes,
- m is the number of variables;
- n is the number of individuals;
- t is the number of iterations of the algorithm.

t should not be included in O, since by including in it, the complexity of the algorithm is not at all assessable.

2) Algorithm complexity analysis?

Example with two sorting algorithms

Bubble sort is $O(n^2)$, where n is the number of items to classify. Using a t indicating the number of iterations, the complexity of bubble sort could be also be denoted O(t) (since an iteration is O(1)).

Quicksort sort is O(nlogn) where n is the number of items to classify. Using a t indicating the number of iterations, the complexity of quicksort sort also be denoted O(t) (since an iteration is O(1)).

<u>Conclusion</u>: Using a t indicating the number of iterations makes complexities incomparable. Even if it is used to evaluate the complexity of a single iteration

3) Measurement of quality of the quality index?

- This study uses the Rand index and Clustering Accuracy.
- We saw that the differences between the two indices are sometimes very important.

3) Measurement of quality of the quality index?

This study uses the Rand index and Clustering Accuracy.

We saw that the differences between the two indices are sometimes very important.

Num	weight0	weight1	weight2	weight3	weight4	Rand Index	Accuracy
1	0.3021	0.4137	0.2268	0.0301	0.0273	1.0000	1.0000
2	0.3021	0.4137	0.2268	0.0301	0.0273	1.0000	1.0000
-3	0.3078	0.4035	0.2310	0.0302	0.0274	0.9956	0.9967
4	0.3078	0.4035	0.2310	0.0302	0.0274	0.9956	0.9967
5	0.3078	0.4035	0.2310	0.0302	0.0274	0.9956	0.9967
6	0.3249	0.1362	0.1212	0.0814	0.3362	0.6204	0.5533
7	0.1204	0.0942	0.0850	0.0601	0.6403	0.5721	0.4500
8	0.1204	0.0942	0.0850	0.0601	0.6403	0.5721	0.4500
9	0.1092	0.0826	0.0772	0.6822	0.0487	0.5545	0.3767
10	0.1091	0.0826	0.0772	0.6824	0.0487	0.5545	0.3733

3) Measurement of quality of the quality index?

How about the other quality indexes?

• Critères de Wallace : $W_{I}(C, C') = \frac{N_{11}}{\sum_{k=1}^{K} n_{k} (n_{k} - 1)/2}$ $W_{II}(C, C') = \frac{N_{11}}{\sum_{k'=1}^{K'} n'_{k'} (n'_{k'} - 1)/2}$ • Folks et Mallows : $F(C, C') = \sqrt{W_{I}(C, C')W_{II}(C, C')}$ • Indice de Jacard : $J(C, C) = \frac{N_{11}}{N_{11} + N_{01} + N_{10}}$

Conclusion

- 1) A very interesting study improving a classical algorithm for clustering (Kmeans)
- 2) A dynamic-weighting approach which seems well founded and which meets an existing need.
- 3) The results look promising but deserved to be better explored.

